(ultra) Sound Mathematics

(ultra) Sound Mathematics (ultra) Sound Mathematics (ultra) Sound Mathematics

(ultra) Sound Mathematics

(ultra) Sound Mathematics (ultra) Sound Mathematics (ultra) Sound Mathematics
  • About us
  • Projects and Publications
  • UK RCNDE
  • Waves and Fields
  • www.soundmathematics.com
  • AutoNDE
  • FFS_ASSESS
  • More
    • About us
    • Projects and Publications
    • UK RCNDE
    • Waves and Fields
    • www.soundmathematics.com
    • AutoNDE
    • FFS_ASSESS

  • About us
  • Projects and Publications
  • UK RCNDE
  • Waves and Fields
  • www.soundmathematics.com
  • AutoNDE
  • FFS_ASSESS

PREVIOUS PROJECTS

2017 - 19

2017 - 19

2017 - 19

 AI for Energy Security, InnovateUK  

2016

2017 - 19

2017 - 19

Game Changer, InnovateUK 

2014 - 15

2017 - 19

2014 - 15

 Model-Based Signal & Image Processing Algorithms for Semi-Automated Crack Characterisation, InnovateUK 

2012 - 14

2012 - 14

2014 - 15

 Aspects of Ultrasonic Wave Propagation”, CEA (The French Atomic Commission) 

2011

2012 - 14

2009 - 10

  

Automated ultrasonic NDE, TSB

Industrial Collaborators:: Doosan Powe Systems Ltd, National Instruments (UK) Ltd 

2009 - 10

2012 - 14

2009 - 10

 Aspects of Ultrasonic Wave Propagation, CEA (The French Atomic Commission 

PUBLICATIONS

2022

L. J. Fradkin, Uskuplu Altinbasak,  M. Darmon

Towards Explainable Augmented Intelligence (AI) for Crack Characterization, Appl. Sci. 2021, 11, 10867. https://doi.org/10.3390/app112210867


2020

L. J. Fradkin, A.K. Djakou, C. Prior, M. Darmon, S, Chatillon and  P.-F. Calmon, The Alternative Kirchhoff Approximation In Elastodynamics With Applications In Ultrasonic Nondestructive Testing, The ANZIAM Journal, 1-17, 2020.
 

2019

M. Darmon, A. K.  Djakou, S. Chehade, S. Potel and L. Fradkin, Two Elastodynamic Incremental Models: The Incremental Theory of Diffraction and a Huygens Method., IEEE Trans Uktrason  Ferroelectr Freq Control., 66(5), 998-1005, 2019.  


2018

C. Samar, M. Darmon, G. Lebeau and L. Fradkin, The spectral functions method for elastic plane wave diffraction by a wedge, Days of Diffraction, St Peterburg, Russia, 4 - 8 June 2018. 


2016 

1. B Lü, M Darmon, L Fradkin, C Potel. Numerical comparison of acoustic wedge models, with application to ultrasonic telemetry Ultrasonics65, 5-9, 2016.

2. L.J. Fradkin, M. Darmon, S. Chatillon, P, Calmon. A semi-numerical model for near-critical angle scattering. J. Acoust. Soc. Am, 139(1),141-150, 2016. 

  

2015 

1. M. Darmon,  V. Dorval, A. Kamta Djakou, L. Fradkin and S. Chatillon,  A system model for ultrasonic NDT based on the Physical Theory of Diffraction (PTD), Ultrasonics, 64, 115–127. 

2. A.K. Djakou, M Darmon, L Fradkin and C Potel, The Uniform geometrical Theory of Diffraction for elastodynamics: Plane wave scattering from a half-plane, The Journal of the Acoustical Society of America, 138 (5), 3272-3281. 

3. V. Dorval, M. Darmon, S. Chatillon and L. Fradkin,, Simulation of the UT inspection of planar defects using a generic GTD-Kirchhoff approach, 41ST ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, 34, 1650 – 1756.  


2014

1. 1.K. Mohammadi, D. Asimaki and L. Fradkin,  Scattering of In-Plane Waves by Elastic Wedges,  American Geophysical Union, Fall Meeting 2014, abstract #S31C-4418.

2. L Fradkin, M Harmer, M Darmon. Edge diffraction coefficients around critical rays. J. Phys.: Conference Series, 498 (1), 012010, 2014.


2013

1. V. Zernov, L. Fradkin, M. Darmon and P. Calmon, Wedge diffraction of a critically incident Gaussian beam, Wave Motion, 50(40), 708-22, 2013.

2. L. Fradkn, M.Harmer and  M. Darmon, Edge Diffraction Coefficients around Critical Rays, Proc. of Anglo-French Physical Acoustics Conference GDR-AFPAC, Journal of Physics: Conference Series 498 (2014) 012010 doi:10.1088/1742-6596/498/1/012010.

3. L. Fradkin, V. Zernov, G. Elston, R. Taneja,  I. Bell, D. Lines, J. Wharrie and P. Fitzgerald, Towards semi-automated non-destructive evaluation, Journal of Physics: Conference Series 457 012008, doi:10.1088/1742-6596/457/1/012008. 


2012

1. V.  Zernov and L. Fradkin, A refinement of the Kitchhoff Approximation to the Elastic field Scattered by Straight Edged Cracks, Ultrasonics, 52(7), 830 - 5. 

2.  Darmon M., Chatillon S., Mahaut. S., Calmon P., Fradkin L and Zernov V., Recent advances in semi-analytical scattering models for NDT, Proc. of Anglo-French Physical Acoustics Conference GDR-AFPAC, Journal of Physics: Conference Series, 269, http://iopscience.iop.org/1742-6596/353/1. 


2011

1. Zernov V., Fradkin L. and Mudge P. "Guided waves in overlapping grouted plates immersed in water", Ultrasonics, 5(1), 57 - 64.

2. Gautesen A. and Fradkin L. "Diffraction by a two-dimensional traction free wedge", SIAM J. Appl. Math, 70 (8), pp. 3065-3085. 

3. Fradkin L., Gautesen A, Zernov V., and Darmon A. “Elastic wave diffraction by infinite wedges”, Proc. of Anglo-French Physical Acoustics Conference GDR-AFPAC, Journal of Physics: Conference Series, 269, 012021 doi:10.1088/1742-6596/269/1/012021.

 4. Darmon M., Chatillon S., Mahaut. S., Calmon P., Fradkin L and Zernov V. “Recent advances in semi-analytical scattering models for NDT”, Proc. of Anglo-French Physical Acoustics Conference GDR-AFPAC, Journal of Physics: Conference Series, 269, 012013, doi:10.1088/1742-6596/269/1/012013. 


2010

Fradkin L. and Stacey R. "The high-frequency description of scatter of a plane compressional wave by an elliptic crack", Ultrasonics, 50(4-5), 529-538. 

Copyright © 2022 Sound Mathematics Ltd - All Rights Reserved.

Powered by GoDaddy