2022
L. J. Fradkin, Uskuplu Altinbasak, M. Darmon
Towards Explainable Augmented Intelligence (AI) for Crack Characterization, Appl. Sci. 2021, 11, 10867. https://doi.org/10.3390/app112210867
2020
L. J. Fradkin, A.K. Djakou, C. Prior, M. Darmon, S, Chatillon and P.-F. Calmon, The Alternative Kirchhoff Approximation In Elastodynamics With Applications In Ultrasonic Nondestructive Testing, The ANZIAM Journal, 1-17, 2020.
2019
M. Darmon, A. K. Djakou, S. Chehade, S. Potel and L. Fradkin, Two Elastodynamic Incremental Models: The Incremental Theory of Diffraction and a Huygens Method., IEEE Trans Uktrason Ferroelectr Freq Control., 66(5), 998-1005, 2019.
2018
C. Samar, M. Darmon, G. Lebeau and L. Fradkin, The spectral functions method for elastic plane wave diffraction by a wedge, Days of Diffraction, St Peterburg, Russia, 4 - 8 June 2018.
2016
1. B Lü, M Darmon, L Fradkin, C Potel. Numerical comparison of acoustic wedge models, with application to ultrasonic telemetry Ultrasonics65, 5-9, 2016.
2. L.J. Fradkin, M. Darmon, S. Chatillon, P, Calmon. A semi-numerical model for near-critical angle scattering. J. Acoust. Soc. Am, 139(1),141-150, 2016.
2015
1. M. Darmon, V. Dorval, A. Kamta Djakou, L. Fradkin and S. Chatillon, A system model for ultrasonic NDT based on the Physical Theory of Diffraction (PTD), Ultrasonics, 64, 115–127.
2. A.K. Djakou, M Darmon, L Fradkin and C Potel, The Uniform geometrical Theory of Diffraction for elastodynamics: Plane wave scattering from a half-plane, The Journal of the Acoustical Society of America, 138 (5), 3272-3281.
3. V. Dorval, M. Darmon, S. Chatillon and L. Fradkin,, Simulation of the UT inspection of planar defects using a generic GTD-Kirchhoff approach, 41ST ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, 34, 1650 – 1756.
2014
1. 1.K. Mohammadi, D. Asimaki and L. Fradkin, Scattering of In-Plane Waves by Elastic Wedges, American Geophysical Union, Fall Meeting 2014, abstract #S31C-4418.
2. L Fradkin, M Harmer, M Darmon. Edge diffraction coefficients around critical rays. J. Phys.: Conference Series, 498 (1), 012010, 2014.
2013
1. V. Zernov, L. Fradkin, M. Darmon and P. Calmon, Wedge diffraction of a critically incident Gaussian beam, Wave Motion, 50(40), 708-22, 2013.
2. L. Fradkn, M.Harmer and M. Darmon, Edge Diffraction Coefficients around Critical Rays, Proc. of Anglo-French Physical Acoustics Conference GDR-AFPAC, Journal of Physics: Conference Series 498 (2014) 012010 doi:10.1088/1742-6596/498/1/012010.
3. L. Fradkin, V. Zernov, G. Elston, R. Taneja, I. Bell, D. Lines, J. Wharrie and P. Fitzgerald, Towards semi-automated non-destructive evaluation, Journal of Physics: Conference Series 457 012008, doi:10.1088/1742-6596/457/1/012008.
2012
1. V. Zernov and L. Fradkin, A refinement of the Kitchhoff Approximation to the Elastic field Scattered by Straight Edged Cracks, Ultrasonics, 52(7), 830 - 5.
2. Darmon M., Chatillon S., Mahaut. S., Calmon P., Fradkin L and Zernov V., Recent advances in semi-analytical scattering models for NDT, Proc. of Anglo-French Physical Acoustics Conference GDR-AFPAC, Journal of Physics: Conference Series, 269, http://iopscience.iop.org/1742-6596/353/1.
2011
1. Zernov V., Fradkin L. and Mudge P. "Guided waves in overlapping grouted plates immersed in water", Ultrasonics, 5(1), 57 - 64.
2. Gautesen A. and Fradkin L. "Diffraction by a two-dimensional traction free wedge", SIAM J. Appl. Math, 70 (8), pp. 3065-3085.
3. Fradkin L., Gautesen A, Zernov V., and Darmon A. “Elastic wave diffraction by infinite wedges”, Proc. of Anglo-French Physical Acoustics Conference GDR-AFPAC, Journal of Physics: Conference Series, 269, 012021 doi:10.1088/1742-6596/269/1/012021.
4. Darmon M., Chatillon S., Mahaut. S., Calmon P., Fradkin L and Zernov V. “Recent advances in semi-analytical scattering models for NDT”, Proc. of Anglo-French Physical Acoustics Conference GDR-AFPAC, Journal of Physics: Conference Series, 269, 012013, doi:10.1088/1742-6596/269/1/012013.
2010
Fradkin L. and Stacey R. "The high-frequency description of scatter of a plane compressional wave by an elliptic crack", Ultrasonics, 50(4-5), 529-538.
Copyright © 2024 Sound Mathematics Ltd - All Rights Reserved.
Powered by GoDaddy